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Abstract Accurate estimation of terrestrial evapotranspiration (E) is critical to understand the world's
energy and water cycles. MOD16 is the core algorithm of the widely used global E data set (the Moderate
Resolution Imaging Spectroradiometer [MODIS] E product). However, it exhibits considerable uncertainties
in some regions. Based on the data from 175 flux towers, we identified the key parameters of the MOD16
algorithm using the Sobol’ sensitivity analysis method across biomes. The output of the MOD16 algorithm
was sensitive to eight parameters. Among them, β, which is treated as a constant (0.2 kPa) across biomes
in the original MOD16 algorithm, was identified as the parameter to which the algorithmwasmost sensitive.
We used the differential‐evolution Markov chain method to obtain the proper posterior distributions for
each key parameter across a range of biomes. The values of the key parameters for the different biomes were
accurately estimated by differential‐evolution Markov chain in comparison with data from the flux towers.
We then evaluated the performances of the original MOD16 and the optimized MOD16 and compared
them at multiple spatial scales (i.e., site, catchment, and global). We obtained relatively consistent and more
reliable E simulations using the optimizedMOD16 at all three scales. In the future, more attention should be
paid to uncertainties in the algorithm's structure and its parameterizations of soil moisture constraint,
canopy resistance, and energy partitioning.

1. Introduction

Terrestrial evapotranspiration (E) is a key component of the global hydrological cycle and functions as a nexus
that links the exchanges of water, carbon, and energy between the biosphere and the atmosphere (Jung et al.,
2011; Wang & Dickinson, 2012). Thus, accurate quantification of E and its spatial and temporal patterns are
crucial for understanding regional water and energy balances and improving practical applications of the
associated processes in irrigation and water resource management (Morillas et al., 2013; Oki & Kanae,
2006; Yang et al., 2012; Zhang et al., 2016). Over the past few decades, numerousmodels of E based on satellite
remote sensing have been developed to allowmapping of E from regional to global scales, primarily due to the
ability of satellite sensors to efficiently capture land surface information over very large scales, including at a
global scale. The majority of these models can be broadly categorized into three groups: surface energy‐
balance models (Bastiaanssen et al., 1998; Norman et al., 1995; Su, 2002), vegetation index (VI)‐land surface
temperature (LST) triangle/trapezoidal models (Jiang & Islam, 1999; Long & Singh, 2012; Yang & Shang,
2013), and Penman‐Monteith (PM) or Priestley‐Taylor (PT) models (Cleugh et al., 2007; Fisher et al., 2008;
Leuning et al., 2008; Miralles et al., 2011; Mu et al., 2007, 2011; Zhang, Kimball, et al., 2010; Zhang,
Leuning, et al., 2010). The first two types are commonly based on remotely sensed LST. They first calculate
the sensible heat flux based on the difference between LST and air temperature, then regard the latent heat
flux (or its water equivalent, E) as a residual in the surface energy‐balance equation. In contrast, the PM‐

or PT‐based models do not require LST as a model input. Instead, they estimate E (or its two components,
evaporation and transpiration) directly from PM‐ or PT‐type equations, in which the required surface
conductance is expressed as a function of a remotely sensed VI and concurrent meteorological conditions.

Among those models, the PM‐based models have been widely used in hydrological, ecological, and climato-
logical studies (e.g., Chen et al., 2014; Ershadi et al., 2014, 2015; Hu et al., 2015; Long et al., 2014; McCabe
et al., 2016; Mueller et al., 2013; Ramoelo et al., 2014; Vinukollu et al., 2011; Yang et al., 2014; Zhang
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et al., 2008, 2015). This is because they offer the advantage of estimating E directly at daily or longer time
scales. This effectively avoids the uncertainty that arises when upscaling E values from an instantaneous
scale (a snapshot at the time of the satellite overpass) to longer scales, which is required in both energy‐
balance residual models and VI‐LST space models (Ryu et al., 2012). MOD16 is the underlying algorithm
of the E product produced by the Moderate Resolution Imaging Spectroradiometer (MODIS). The algorithm
calculates plant transpiration, soil, and canopy intercepted evaporation separately using a set of PM‐type
equations, in which the conductance terms (i.e., aerodynamic and canopy surface conductance) and soil sur-
face moisture constraints are estimated from a set of semiempirical equations that have been developed for
different land cover types (Mu et al., 2011).

On the one hand, these semiempirical equations are relatively easy to implement and thus allow operational
application of MOD16 at a global scale. On the other hand, these semiempirical functions require calibration
against actual Emeasurements, and their performances depends on the amount of E data and the represen-
tativeness of the observation sites that provided these data for each land cover type. The latest version of the
MOD16 algorithm (Mu et al., 2011), which represents an improvement over the original version of Mu et al.
(2007) based on methods originally developed by Cleugh et al. (2007), was calibrated against E observations
from 46 flux sites in the AmeriFlux network (http://ameriflux.lbl.gov/). However, subsequent studies
showed that MOD16 performs suboptimally, and in a few cases unacceptably, in many regions of the world
(Ershadi et al., 2015; Kim et al., 2012; Ramoelo et al., 2014; Trambauer et al., 2014; Velpuri et al., 2013; Yang
et al., 2015; Yao et al., 2014). This is partly due to the limited and geographically biased observations that Mu
et al. (2011) used to calibrate MOD16 (they used only 46 sites, and all of the sites were located in North
America). This suggests that the original parameters of MOD16 may be unsatisfactory, especially for regions
outside of North America. In this light, it is imperative to recalibrate the algorithm and optimize its para-
meters using a more comprehensive collection of site‐specific E data that cover the range of global biocli-
matic conditions (McCabe et al., 2016). In addition, the intrinsic parameter had been proved with
significant influence on the simulation process (Michel et al., 2005). The parameter β in MOD16 is treated
as an intrinsic parameter and holds constant across global bioclimate conditions. However, previous studies
have illustrated that its values have significant influences on the soil evaporation estimations (Yang et al.,
2015; Zhang et al., 2017). Thus, it is urgently needed to investigate its influence on the simulation process
and identify its proper values across global bioclimates for improving the performance of MOD16.

Sensitivity analysis is a powerful tool for understanding the importance of model parameters in terms of how
variations in their values affect model outputs and for optimizing the model parameters (Nossent et al., 2011;
Zhang et al., 2017; Zhu et al., 2016). In conventional hydrological and ecological model analysis, the one‐
fact‐at‐a‐time (OAT) method, in which one parameter is changed at a time while fixing others, has been
widely used to assess the sensitivity of models to the values of their parameters (Bouda et al., 2014; van
Griensven et al., 2006). However, despite its low computational cost, the OAT method has been shown to
produce highly biased results when it is applied to high‐dimension and nonlinear systems (Yang, 2011),
which is a common case in environmental modeling. To solve that problem, global sensitivity analysis
(GSA) has been used, as it is designed for exploring the sensitivity of models to their parameters over the
entire parameter space, and is therefore more suitable for environmental models that consist of a set of non-
linear processes, such as those in the MOD16 algorithm (Pappenberger et al., 2008; Vanrolleghem et al.,
2015; Zhang et al., 2013). Recently, various GSA methods have been developed for use with hydrological
and environmental models and have shown improved ability to quantify model sensitivity to parameters
compared with the OAT method (Confalonieri et al., 2010; Foscarini et al., 2010; Nossent et al., 2011;
Tang et al., 2007).

For parameter optimization, Bayesian‐based methods have gained considerable attention from the environ-
mental modeling community because they provide a powerful tool from which inferences can be drawn
(Clark & Gelfand, 2006; Huisman et al., 2010; Keating et al., 2010; Zhu et al., 2014). However, conventional
Bayesian‐based methods, such as Markov‐chain Monte Carlo (MCMC) analysis, often suffer from problems
related to selection of an appropriate scale and orientation for the jumping distribution, which may prevent
the algorithm from efficiently converging (Haario et al., 2006; Vrugt et al., 2009). Alternatively, the
differential‐evolution Markov chain (DE‐MC) method (Ter Braak, 2006; Ter Braak & Vrugt, 2008) combines
a genetic algorithm (Storn & Price, 1997) with the MCMC method. Multiple Markov chains are constructed
in the DE‐MCmethod to estimate the posterior distribution of the parameters, which has the advantage that
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it can effectively avoid the problem of achieving local convergence that occurs with single chains and can
greatly improve the computational efficiency. Hence, the DE‐MCmethod is a more suitable tool for use with
the high‐dimensional models, from which inferences are drawn in environmental and hydrological sciences
(Smith &Marshall, 2008; Ter Braak & Vrugt, 2008). Nevertheless, no studies have been conducted using the
DE‐MC method to optimize the parameters of the MOD16 algorithm.

In this study, we investigated the sensitivity of MOD16 to the values of its parameters so that we could iden-
tify its key parameters and optimize their values using E observations from eddy covariance towers around
the world. Specifically, our objectives were to (i) identify and analyze the key parameters in MOD16 that
were specific to different land cover types, (ii) optimize the values of the key model parameters and use them
to generate a global terrestrial daily E data set, and (iii) comprehensively evaluate the new MOD16 E esti-
mates across multiple spatial scales (i.e., site, catchment, and global scales) by comparing them with the
results of the original MOD16.

2. Methods
2.1. Review of the MOD16 Algorithm

TheMOD16 algorithm calculates the actual evaporation from the soil (Es) and wet canopy (i.e., canopy inter-
cepted evaporation; Ewet) and the plant transpiration (Et) individually based on PM‐type equations. The total
evapotranspiration is the sum of these three components:

E ¼ Ewet þ Es þ Et (1)

where

Ewet ¼ Δ⋅Rnc þ ρ⋅CP⋅f c⋅VPD=rhrcð Þ⋅fwet=λ
Δþ Pa⋅CP⋅rvcð Þ= λ⋅ε⋅rhrcð Þ (2)

Es ¼ Δ⋅Rns þ ρ⋅CP⋅ 1−f cð Þ⋅VPD=rasð Þ=λ
Δþ γ⋅rtot=ras

⋅ f wet þ 1−fwetð Þ⋅f sm½ � (3)

Et ¼ Δ⋅Rnc þ ρ⋅CP⋅f c⋅VPD=rað Þ⋅ 1−fwetð Þ=λ
Δþ γ⋅ 1þ rsð Þ=ra (4)

In equations (2) to (4), Δ is the slope of the saturated vapor‐pressure curve (kPa/°C), ρ is the air densi-
ty (kg/m3), Cp is the specific heat capacity of air (MJ · kg−1 · °C−1), λ is the latent heat of evaporation
(MJ/kg), ε is the ratio of the molecular weight of water to dry air (i.e., 0.622), γ is the psychrometric con-
stant (kPa/°C), Pa is the atmospheric pressure (kPa), and VPD is the atmospheric vapor‐pressure deficit
(kPa). Rnc and Rns (W/m2) are the net radiation allocated to the canopy and soil surfaces, respectively,
which are calculated based on the whole‐surface net radiation (Rn) weighted by the relative areas of each
component. fc is the fractional vegetation cover (dimensionless), and fwet is the relative surface wetness
(equal to the fourth power of relative humidity, RH4).

In estimating Ewet (i.e., equation (2)), rvc and rhrc represent the surface resistance (s/m) and aerodynamic
resistance (s/m) to evaporated water on the wet canopy surface, respectively, and are quantified by the
following equations:

rvc ¼ 1
gl e wv⋅LAI⋅fwet

(5)

rhrc ¼ rhc⋅rrc
rhc þ rrc

(6)

rhc ¼ 1
gl sh⋅LAI⋅fwet

(7)

rrc ¼ ρ⋅CP

4⋅σ⋅Ti
3 (8)
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where Ti represents the daytime or nighttime average temperature (°C), LAI is the leaf area index (leaf
area per unit ground area covered by the leaves), σ is the Stefan‐Boltzmann constant (i.e.,
5.6704 × 10−8, W · m−2 · K−4), rhc is the wet canopy resistance to sensible heat, and rrc is the resistance
to radiative heat transfer through air (s/m). There are two basic parameters (Table 1; dotted boxes in
Figure 1) in the wet canopy surface section: gl_e_wv and gl_sh, that represent the leaf conductance for
evaporated water vapor and the sensible heat per unit LAI, respectively (m/s).

In estimating Es (i.e., equation (3)), rtot is the total aerodynamic resistance (s/m), which represents the sum
of the surface resistance and the aerodynamic resistance for vapor transport, and ras is the aerodynamic
resistance at the soil surface (s/m):

rtot ¼ rtotc⋅rcorr (9)

ras ¼ rrs⋅rhs
rrs þ rhs

(10)

rtotc ¼

rblmin VPD≤VPDopen

rblmax−
rblmax−rblminð Þ⋅ VPDclose−VPDð Þ

VPDclose−VPDopen
VPDopen≤VPD≤VPDclose

rblmax VPD≥VPDopen

8>>><
>>>:

(11)

where rtotc is an initial value for rtot, which can be calculated by a segmented function of VPD with a
maximum limit (rblmax) and a minimum limit (rblmin), and rcorr is a correction coefficient based on air
temperature and pressure. The aerodynamic resistance at the soil surface (ras) is derived from rrs (the
resistance to radiative heat transfer, which is the same as rrc in the equation (8)) and rhs (the resistance to
convective heat transfer, which is equal to rtot).

The term fsm is the constraint to soil evaporation, which is an index of soil water deficit based on the
complementary hypothesis (Bouchet, 1963; Fisher et al., 2008) as a function of relative humidity (RH, %)
and VPD (kPa):

f sm ¼ RHVPD=β (12)

where β is the sensitivity of fsm to VPD and was set as a constant of 0.2 (kPa) by Mu et al. (2011). However,
previous studies have noted that the value of β should change to account for differences among land cover
types and climate conditions (Yang et al., 2015). For example, Zhu et al. (2016) have shown that the model
performs better using a low value (β = 0.1) for water‐limited ecosystems. Thus, in this study, we regarded β
as a variable rather than as a constant (Table 1; dotted box in Figure 1) and included it in the optimization
calculations.

In estimating Et (equation (4)), ra is the aerodynamic resistance between the mean canopy height (s/m) and
the air above the canopy and rs is the canopy surface resistance (s/m), which are estimated by

ra ¼ rh⋅rr
rh þ rr

(13)

rs ¼ 1
Cc

(14)

rh ¼ 1
gl bl

(15)

Cc ¼ gl sh⋅ Gs þ Gcuð Þ
Gs þ gl sh þ Gcu

⋅LAI⋅ 1−f wetð Þ (16)

Gs ¼ Cl⋅m Tminð Þ⋅m VPDð Þ⋅rcorr (17)

Gcu ¼ gcu⋅rcorr (18)
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rcorr ¼ P
101:3

⋅
Ti þ 273:15

293:15

� �−1:75

(19)

where rr is the radiative heat transfer resistance, which is the same as rrc (s/m), rh is the convective heat
transfer resistance (s/m), and gl_bl is the leaf boundary layer conductance (m/s), which is equal to gl_sh in
the previous equations. Cc is the surface conductance (m/s1), Gs is the stomatal conductance (m/s), gcu is
the cuticular conductance per unit LAI (m/s), and Cl is the mean potential stomatal conductance per unit
LAI (m/s). In this section, gl_bl, gl_sh, Cl, and the four climate thresholds (i.e., Tmin_close, Tmin_open,
VPDclose, and VPDopen) are used as the basic parameters (Figure 1 and Table 1). Further details of the
MOD16 algorithm and its parameters are available in Mu et al. (2007, 2011).

Table 1
The Descriptions and Prior Ranges of the Parameters in the MOD16 Algorithm That Were Used in the Sensitivity Analysis and Optimization Calculations

Parameter Description Intermediate variable Prior range Unit

Tmin_open Minimum temperature that has no inhibition of transpiration rs → ET [4, 18] °C
Tmin_close Minimum temperature that has nearly complete inhibition of transpiration rs → ET [−12, −3] °C
VPDclose VPD that has nearly complete inhibition of transpiration rs → ET; ras → Es [1450, 6500] kPa
VPDopen VPD that has no inhibition of transpiration rs → ET; ras → Es [325, 1500] kPa
gl_sh Leaf conductance of sensible heat per unit LAI rhrc → Ewet; rs & ra → ET [0.005, 0.12] m/s
gl_e_wv Leaf conductance of evaporated water vapor per unit LAI rvc → Ewet [0.005, 0.12] m/s
Cl Mean potential stomatal conductance per unit leaf area rs → ET [0.0013, 0.0105] m/s
rblmin Minimum value for total aerodynamic resistance of soil ras → Es [10, 105] s/m
rblmax Maximum value for total aerodynamic resistance of soil ras → Es [20, 150] s/m
β A sensitivity index for the soil constraint on VPD fsm → Es [0, 1] kPa

Note. rs and ra are the surface resistance and aerodynamic resistance of the dry canopy, rvc and rhrc are the surface resistance and aerodynamic resistance of the
wet canopy, and ras is the aerodynamic resistance of soil. LAI, leaf area index; VPD, vapor‐pressure deficit.

Figure 1. Parameterization scheme of the MOD16 algorithm. Basic parameters are the parameters for which we con-
ducted the sensitivity analysis.
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2.2. Global Sensitivity Analysis

In this study, we adopted the method of Sobol (Sobol', 1990, 2001) to calculate the sensitivity index (SI) of the
basic parameters in MOD16. This method is a GSA approach based on variance decomposition and is applic-
able to nonlinear and nonmonotonic models or algorithms. A parameterized model (algorithm) can be
represented by the following functional form.

y ¼ f X ; θð Þ (20)

where y is the output of the model (or the objective function), θ is the model parameter, and X is the forcing
data of themodel. In the Sobol’method, the total variance of function f can be decomposed into a summation
of terms with increasing dimensionality:

D yð Þ ¼ ∑
k

i¼1
Di þ ∑

k−1

i¼1
∑
k

j¼iþ1
Dij þ⋯þ D1;⋯;k
� �

(21)

where D(y) is the partial variance for the first‐order sensitivity of θi for the model output y, Dij is the partial
variance for the second‐order sensitivity for the ith and jth parameter interactions, and k is the total number
of parameters. The final sensitivity effect is divided into a first‐order sensitivity, a second‐order sensitivity,
and a total‐order sensitivity, which are characterized by the ratio of the partial variances to the total variance.
Further details about the method can be found in the supporting information, and also available in Nossent
et al. (2011).

2.3. Parameter Optimization With a Differential‐Evolution Markov Chain

When the observed data are fixed in a Bayesian framework, the posterior distribution of a parameter is gen-
erally proportional to the corresponding prior distribution of the parameter, multiplied by a likelihood
function:

p θjOð Þ∝p Ojθð Þp θð Þ (22)

where O is the observed data, θ is the parameter, p(θ|O) is the posterior distribution of the parameter, p(θ) is
the prior distribution of the parameter (uniform distribution in this study), and p(O|θ) is the likelihood func-
tion that reflects the effect of the observed data on the parameter identification and can be expressed as fol-
lows (Zhu et al., 2014):

p O tð Þjθð Þ ¼ ∏
T

t¼1

1ffiffiffiffiffiffi
2π

p
σ2

exp −
O tð Þ−S tð Þð Þ2

2σ2

 !
(23)

where T is the total number of observed data, O(t) is the observed data at time t, S(t) is the simulated data at
time t, π is a mathematical constant approximately equal to 3.1416, and σ is the standard deviation of the
model error during the observed period and is regarded as fixed (Braswell et al., 2005).

In this study, we estimated the posterior distribution (i.e., equation (22)) using the DE‐MC scheme, which is
an adaptive MCMC algorithm that has been proposed for global optimization in real parameter spaces by
combining multiple chains that are running in parallel (Ter Braak & Vrugt, 2008). In DE‐MC, the proposals
are generated based on two chains that are randomly selected from multiple chains, and the difference
between the two chains is multiplied by a scaling factor γ and then added to the current chain:

θp ¼ θi þ γ θr1−θr2ð Þ þ e (24)

where θp is the proposed parameter; θr1 and θr2 are the two randomly selected chains running in parallel; γ is
the scaling factor, which can be set as 2:38=

ffiffiffiffiffi
2d

p
where d is the dimension of the parameter; and e is drawn

from a symmetrical distribution and represents a probabilistic acceptance rule in the DE‐MC. For example,
e ~N(0, b)2 for small b, whereN represents a normal distribution. In the present analysis, we ran 20 chains in
parallel with 8000 iterations, including 500 iterations as a burn‐in period.

More specifically, we first used the DE‐MC to obtain a set of optimized parameters (the median values of the
posterior distributions) for each site and calculated the site‐level root‐mean‐square error (S‐RMSE) based on
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the difference between the observed and simulated values (which were obtained by optimized parameters).
By the end of this step, the posterior distributions of the parameters for each biome will be substantially
lower than their prior distributions (Zhang et al., 2017; Zhu et al., 2014). Next, we used the DE‐MC again
to obtain a set of parameters that was suitable for both the site and biome levels. That is, we randomly
selected a set of parameters from the parameter space obtained in the first step. We then calculated the
root‐mean‐square error (RMSE) values for all sites that belonged to a given biome and compared the
results with the S‐RMSE values. This cycle of comparisons was repeated until the values of the RMSE
became closest to the S‐RMSE values for the biome (i.e., until the analysis achieved convergence). This
procedure ensured that the optimized parameters had an optimal balance for each site that belonged to a
specific biome.

2.4. Evaluation and Objective Function

The parameter sensitivity analysis and optimization need a goodness‐of‐fit metric to address the uncertainty
and errors in the simulation. We chose the RMSE as the objective function to be minimized. Moreover, we
quantified mismatches between the model and the data at the site and biome levels using Pearson's
correlation coefficient (r), the slope of the model, its y intercept, its bias, its relative error (RE), and the
Nash‐Sutcliffe efficiency coefficient (NSE; Legates & McCabe, 1999; Nash & Sutcliffe, 1970). These statistics
were calculated as follows:

Bias ¼ 1
T
∑
T

t¼1
O tð Þ−S tð Þ½ � (25)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T
∑
T

t¼1
O tð Þ−S tð Þ½ �2

s
(26)

RE ¼ RMSE

O
(27)

NSE ¼ 1−
∑
T

t¼1
O tð Þ−S tð Þ½ �2

∑
T

t¼1
O tð Þ−O� �2 (28)

where O is the mean of the observed data and NSE is used to quantitatively describe the accuracy of the
model outputs other than the observed data with a range from −∞ to 1. Generally, the closer the NSE is
to 1, the more accurate the simulation is.

Additionally, we used Taylor diagrams (Taylor, 2001) to characterize the model's performance. Each single
point in the diagram represents the correlation coefficient (r), the normalized standard deviation (the ratio
of the standard deviation of the simulated values to the standard deviation of the observations). It can be
scored as

S ¼ 2 1þ rð Þ
σs=σoð Þ þ 1= σs=σoð Þ½ �2 (29)

where S is the model skill metrics bounded by zero and unity (i.e., unity indicates perfect agreement with the
observations) and σs and σo are the standard deviations of the simulated and observed data, respectively.

3. Data
3.1. Input Data
3.1.1. Remote‐Sensing Data
To characterize the state of the land surface vegetation and its radiation absorption, and to generate the E
data set at a global scale, we used three sets of MODIS remote‐sensing products from 2001 to 2006:

(i) The LAI and the fraction of photosynthetically active radiation absorbed by green vegetation (fPAR)
from the MCD15A2 product at a 1‐km spatial resolution and an 8‐day temporal interval.
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(ii) The surface albedo from the MCD43C1 product (band 10 of the white‐sky albedo) at a 0.05° spatial
resolution and a daily temporal interval.

(iii) The land cover type from the MCD12C1 product (band 1 of the IGBP classification) at a 0.05° spatial
resolution and an annual temporal interval.

These products were acquired from the Land Processes Distributed Active Archive Center (https://lpdaac.
usgs.gov/dataset_discovery/modis) and were reprojected onto the WGS84 grid and spatially resampled to
a 0.05° spatial resolution before using them as the forcing values. In addition, we performed temporal inter-
polation of the remote‐sensing product based on the method proposed by Zhao et al. (2005) to obtain data for
the pixels with low data quality or missing data (i.e., based on the quality control band of these products),
which was caused primarily by cloud contamination.
3.1.2. Meteorological Data
We chose the Modern‐Era Retrospective analysis for Research and Applications Version 2 (MERRA‐2,
Gelaro et al., 2017) from National Aeronautics and Space Administration (NASA)'s Global Modeling and
Assimilation Office (https://disc.sci.gsfc.nasa.gov) to provide global meteorological data at a spatial resolu-
tion of 0.5° × 0.625° and a daily temporal interval. This data set included near‐surface air pressure and
temperature, specific humidity, and downward shortwave radiation.

To match the MODIS spatial resolution, we performed spatial interpolation of the surface meteorological
data based on the nonlinear spatial interpolation method proposed by Zhao et al. (2005). In brief, this
method used a cosine function raised to the fourth power to separately obtain the nonlinear distance based
on the great circle distance between the four MERRA‐2 pixels surrounding a given MODIS pixel and the
MODIS pixel. We then acquired the interpolated result for a given pixel from the weighted value of the four
coarse pixels, which were based on the nonlinear distance. This spatial interpolation is logical and accurate
because it eliminates the abrupt boundary changes between the coarse MERRA‐2 pixels (Mu et al., 2011;
Zhao et al., 2005).

3.2. Global E Data for Model Calibration and Evaluation
3.2.1. Site‐Scale E Values
We used a total of 175 flux sites from FLUXNET (Baldocchi et al., 2001; Jung et al., 2009) to identify the para-
meters to which theMOD16 algorithmwasmost sensitive so that we could optimize these parameters. These
sites represent a wide range of land cover types (from the MODIS IGBP classification, https://modis.gsfc.
nasa.gov/data/dataprod/mod12) and were distributed throughout the world (Figure 2). They included the
following biomes: evergreen needleleaf forest (ENF, 46 sites), evergreen broadleaf forest (EBF, 14 sites),
deciduous needleleaf forest (DNF, 1 sites), deciduous broadleaf forest (DBF, 25 sites), mixed forest (MF, 6
sites), closed shrubland (CSH, 3 sites), open shrubland (OSH, 13 sites), woody savanna (WSA, 6 sites),
savanna (SAV, 7 sites), grassland (GRA, 36 sites), and cropland (CRO, 18 sites).

The flux data used in this study are all available from the FLUXNET database (at https://fluxnet.fluxdata.
org). We adjusted some of the flux data to ensure the quality of the data used in this study. The energy clo-
sure for site is a key indicator of the quality of the flux data (Zhu et al., 2016). The flux data for a 30‐min
period (for some sites, 60 min) were treated as missing if the energy imbalance (net radiation minus the
sum of the latent, sensible, and ground heat flux) exceeded 300 W/m2. In addition, if data gaps were less
than 6 hr in a day, the missing data were linearly interpolated. After performing these adjustments, the
energy‐balance closure (the sum of the sensible and latent heat flux divided by the available energy) across
land cover types ranged from 76 to 93%, with a mean value of 84%, and the intercept values ranged from
−12.44 to 18.53 W/m2, with a mean value of −1.91 W/m2 (see Figure S2 in supporting information). In
general, the surface energy balance closure usually falls in the range from 70 to 90% (Foken et al., 2006;
Michel et al., 2016; Twine et al., 2000). Thus, the processed flux data were suitable for model evaluation
and optimization.

Furthermore, to make the most of available flux data and to cover as many biomes as possible, we used the
flux observations over different periods for cross validation. That is, at each site, 70% of observed data over
different periods were used for the optimization process with the remaining data were used for cross valida-
tion. In addition, we conducted an additional cross validation using 56 sites for validation and 119 sites for
optimization. It was presented in the supporting information as well.
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3.2.2. Catchment‐Scale E
We obtained catchment‐scale average monthly time series for the water balance components, including pre-
cipitation, E, streamflow, and the change in water storage, for 32 major (i.e., >200,000 km2) river catchments
across the globe (Figure 3) from 1984 to 2006, with the data obtained by Pan et al. (2012). This data set repre-
sents an optimal combination of data sources, as it includes in situ observations, remote‐sensing observa-
tions, land surface model outputs, and reanalysis products and is therefore considered to be the best
available water budget data set to date (Li et al., 2013). Here we used the E value in the Pan et al. (2012) data
set as the observed catchment‐scale E.
3.2.3. Other Global‐Scale E Data Sets
To compare the amount and spatial distribution of the optimized E data set to those of other related global E
data sets, we incorporated five widely used data sets into our assessment: (1) the Original MODIS
Evapotranspiration product (Mu et al., 2007, 2011), (2) the Global Land Evaporation Amsterdam Model
(GLEAM, Miralles et al., 2011; Martens et al., 2017), (3) the Model Tree Ensemble (MTE, Jung et al., 2009,
2011), (4) the PM‐Leuning (PML) model (Leuning et al., 2008; Zhang et al., 2008; Zhang, Leuning, et al.,
2010), and (5) the European Centre for Medium‐range Weather Forecasts Reanalysis‐Interim evaporation
product (ERA‐Interim; Dee et al., 2011). Table 2 summarizes the details of these E products.

4. Results
4.1. Sensitivity Analysis for MOD16

In this study, we used a sample size of 10,000 to calculate the values of the first‐order and total‐order sensi-
tivities for the key parameters in theMOD16 algorithm. Figures 4a and 4b show the sensitivity indices for the
combinations of biomes and parameters. Figures 4c and 4d present the mean values of the first‐ and total‐
order SI for each parameter across the biomes, respectively. Overall, the sensitivity values of the eight para-
meters (except Tmin_open and Tmin_close) varied greatly among the land cover types, and the final outputs
were sensitive to all parameters except Tmin_open and Tmin_close based on a threshold value of 10% for the
total‐order sensitivity (Tang et al., 2007; Zhang et al., 2013).

Figure 2. Flux sites used in this study. The land cover types are identified based on the International Geosphere‐Biosphere Programme biome classification.
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Figures 4a and 4c demonstrate that β has the highest first‐order sensitivity (the influence of a single factor on
E) in MOD16, with values ranging from 10% for MF to 55% for SAV and a mean value of 29%. rblmax and Cl

also presented relatively high first‐order sensitivity, with values ranging from 2 to 32% and averaging 18%
and from 1 to 20% and averaging 10%, respectively. Moreover, the first‐order sensitivity of rblmax was even
higher than that of β for four biomes (ENF, DNF, MF, and OSH). However, the first‐order sensitivity values
of Tmin_open and Tmin_close were near zero for all biomes, indicating that the influence of these parameters on
themodel outputs was negligible. MOD16 was sensitive to other parameters for specific biomes, even though
their first‐order sensitivity values were less than about one third of the values for the three parameters to
which the model was most sensitive.

Figures 4b and 4d show the total‐order sensitivity of the selected parameters, which represents the sensitivity
contributed from the parameter itself and from its interactions with other parameters. As in the first‐order
sensitivity distribution, the model was most sensitive to β, with values ranging from 29% for DBF to 66%
for SAV and a mean of 48%. rblmax and Cl again had the second and third largest sensitivities, with values
ranging from 11 to 42% and averaging 26% and from 7 to 33% and averaging 17%, respectively. Both are
key parameters in soil evaporation and plant transpiration, respectively (Figure 1). The total‐order sensitivity

Figure 3. The 32 global primary catchments chosen for analysis.

Table 2
Characteristics of the Global Terrestrial E Data Sets Used in the Global‐Scale Comparison

Data Set Theoretical basis Spatial resolution Temporal resolution Start date Version

MOD16‐original PM equation 1 km 8 days 2000 5
GLEAM PT equation 0.25° daily 1982 3.1a
PML PM equation 0.5° daily 1982 n/a
MTE Model tree 0.5° daily 1982 n/a
ERA‐Interim Reanalysis data 0.125 to 1° 3 hr to monthly 1980 n/a

Note. n/a means that only a single version existed at the time of our analysis. PM, Penman‐Monteith; PT, Priestley‐
Taylor.
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values of other parameters (i.e., VPDclose, VPDopen, gl_sh, and rblmin) were higher than their first‐order sen-
sitivity values, which indicates that the simulated E was influenced by interactions among parameters.
Again, MOD16 was insensitive to Tmin_open and Tmin_close based on the total‐order SI for all biomes, with
a total sensitivity near zero. Overall, the output of the MOD16 algorithm was sensitive to eight parameters
(but especially to β, rblmax, and Cl) across the biomes.

4.2. Parameter Optimization Using Site‐Level E Observations

Figure 5 shows the medians and 95% credible intervals for the posterior distributions of the eight parameters
to which the model was most sensitive. In this figure, the limits of the x axis in each graph represent the
range of values in the prior, and the black dots represent the original values for each parameter across
different biomes. These results clearly show that the DE‐MC method successfully reduced the parameter
ranges compared with the assumed prior for most biomes. Among the eight parameters, β, rblmax, Cl, and
gl_sh showed the greatest variability among the biomes.

For β, the median value ranged between 0.31 for DNF and 0.93 for DBF, and forest ecosystems generally had
a high β value (i.e., β > 0.8, light‐green background in Figure 5), whereas nonforest ecosystems (except for
GRA and CRO) had a smaller β value (i.e., β < 0.7, light‐yellow background in Figure 5). Nevertheless, these
optimized β values for each biome were all higher than the fixed value of 0.2 assumed by the original
MOD16. In addition, Cl showed an obvious distinction between the biomes, with much higher median
values for CRO, GRA, SAV, andWSA than for the other biomes. The distributions of the optimized Cl values
for these biomes were consistent with the original MOD16 distribution reported by Mu et al. (2011),
although they decreased at OSH and CSH (approximately 0.002; Table 3).

The posterior distributions of rblmax varied widely among the biomes, and the median values had increased
by various degrees (except for EBF andDBF) compared with the original algorithm (Table 3). In contrast, the
optimized values of gl_e_wv (0.006 to 0.013) were lower in all biomes than the original values (Table 3). For

Figure 4. Results of the sensitivity analysis in the MOD16 algorithm.
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gl_sh, it is interesting to note that the optimized values for the CRO, GRA, SAV,WSA, and OSH biomes (with
a relatively low vegetation canopy) were smaller than the values for the other biomes (except DNF and
DBF), probably due to the effect of wet canopy evaporation. Furthermore, VPDclose and VPDopen, which
are key parameters related to plant transpiration and soil evaporation, had optimized values higher than
the original values for most biomes. Finally, rblmin showed a relatively stable posterior distribution
across the biomes (with most values between 40 and 70), except for DBF (only 20). The optimized values

Figure 5. Posterior distributions of the eight parameters to whichMOD16wasmost sensitive for the different biomes. The boxes represent the 95% credible interval,
and the vertical line represents the median.

Table 3
Comparison of the Original (ori) and Optimized (opt) Values of the MOD16 Parameters

Tmin_open
(°C)

Tmin_close
(°C)

VPDclose
(kPa)

VPDopen
(kPa)

gl_sh
(10−2 m/s)

gl_e_wv
(10−2 m/s)

Cl
(10−3 m/s)

rblmin
(s/m)

rblmax
(s/m) β (kPa)

Ori Opt Ori Opt Ori Opt Ori Opt Ori Opt Ori Opt Ori Opt Ori Opt Ori Opt Ori Opt

ENF 8.31 n/a ‐8 n/a 3.0 5.1 0.65 0.8 4 3 4 0.7 3.2 1.4 65 50 95 110 0.2 0.9
EBF 9.09 n/a ‐8 n/a 4.0 4.8 1 0.7 1 5 1 0.6 2.5 1.4 70 55 100 75 0.2 0.8
DNF 10.44 n/a ‐8 n/a 3.5 5.4 0.65 0.7 4 1 4 1.3 3.2 1.8 65 40 95 140 0.2 0.3
DBF 9.94 n/a −6 n/a 2.9 6.0 0.65 0.9 1 1 1 0.6 2.8 1.3 65 20 100 100 0.2 0.9
MF 9.5 n/a −7 n/a 2.9 5.2 0.65 0.9 4 5 4 0.7 2.5 1.4 65 55 95 120 0.2 0.8
CSH 8.61 n/a −8 n/a 4.3 4.0 0.65 0.8 4 4 4 0.6 6.5 1.7 20 65 55 90 0.2 0.4
OSH 8.8 n/a −8 n/a 4.4 5.7 0.65 1.3 4 2 4 0.7 6.5 1.9 20 45 55 140 0.2 0.5
WSA 11.39 n/a −8 n/a 3.5 5.6 0.65 1.1 8 3 8 0.9 6.5 7.5 25 60 45 115 0.2 0.5
SAV 11.39 n/a −8 n/a 3.6 5.6 0.65 1.1 8 3 8 0.9 6.5 7.4 25 60 45 115 0.2 0.6
GRA 12.02 n/a −8 n/a 4.2 5.8 0.65 1.2 2 1 2 0.6 7 6.6 20 70 50 135 0.2 0.8
CRO 12.02 n/a −8 n/a 4.5 5.2 0.65 1.1 2 1 2 0.7 7 7.4 20 50 50 130 0.2 0.9

Note. CSH, closed shrubland; CRO, cropland; DBF, deciduous broadleaf forest; DNF, deciduous needleleaf forest; EBF, evergreen broadleaf forest; ENF, ever-
green needleleaf forest; GRA, grassland; MF, mixed forest; OSH, open shrubland; SAV, savanna; WSA, woody savanna.
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for the biomes with a lower canopy (light‐yellow background in Figure 5) were higher than the original
MOD16 values (Table 3; Mu et al., 2011).

4.3. Evaluation of MOD16 With Optimized Parameters
4.3.1. At Flux Towers
We evaluated the algorithm's performance by comparing its predictions using the optimized and original
parameters with the flux data from the FLUXNET sites for all biomes (Figure 6 and Table 4). The Taylor dia-
grams in Figure 6 compares themodel performance, with the two axes representing the normalized standard
deviation of the observations (σnorm), and the curves representing Pearson's correlation coefficient (r). At the
site level, both the original and optimized MOD16 showed a similar and relatively large range of r values
(between 0.10 and 0.95). However, the site‐level σnorm and Taylor skill (bar graph) of the optimized para-
meters (red color marks in Figure 6a) are closer to 1 than the original parameters (black color marks in
Figure 6a), which indicates that the E value produced by the optimized algorithm agreed better with the
observed data.

Figure 6b shows that the algorithm's performance varied for the different biomes. At the biome level, σnorm
values of the optimized algorithm were closer to 1 than those of the original algorithm, especially for MF,
OSH, CSH, ENF, and EBF. Moreover, the correlation coefficients (r) for the optimized algorithm (ranging
from 0.60 to 0.84), and are slightly higher than those for the original algorithm (ranging from 0.50 to 0.79).
Table 4 provides details of the improvement permitted by the optimized model (with the better values bold-
faced). As expected, the MOD16 algorithm showed a high degree of biome‐specific variation because the
parameters to which MOD16 was most sensitive depended heavily on the land cover's attributes. The opti-
mized algorithm often underestimated E (bias < 0), but the magnitude of the difference was much less than
that for the original model. Similarly, the optimized algorithm had higher R2 values, lower RE and RMSE
values, but greater NSE values (closer to 1) than the original model, which shows greater consistency with
the observed E data. In addition, the slope of the regression of the simulated versus actual values was closer
to 1 for some biomes using the optimized algorithm, especially in SAV, WSA, GRA, and CRO. Combined

Figure 6. Taylor diagram that compares the performance of the MOD16 algorithm using the original and optimized values of the parameters for (a) all sites and
(b) individual biomes. The bar charts represent the Taylor skills, the boxes represent the 95% credible interval, and the vertical lines represent the median.
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with an additional cross validation in Table S2 in the supporting information, in summary, the model with
the optimized parameters significantly improved the accuracy of E estimates by the MOD16 algorithm at the
biome level.
4.3.2. At the Catchment and Global Scales
To evaluate the performance of the optimized MOD16 for regional‐scale application, we used the long‐term
water balance E (WBE) data for 32 catchments (Figure 3) across a wide range of biomes and climate regimes
using data acquired from Pan et al. (2012). We compared the simulated E from the optimized and original
MOD16 to the WBE data (Figure 7). Figure 7a shows that the slope of the regression of predicted versus
actual values for the optimized MOD16 (0.85) was closer to 1 than that of the original MOD16 (0.81).
Moreover, its R2 (0.84) was approximately 20% greater than that of the original MOD16 (0.70), indicating
that the optimized MOD16 agreed better with the WBE data. In addition, the difference between the opti-
mized and original NSE values for the 32 catchments was generally >0 (i.e., a superior result for the opti-
mized algorithm), indicating that the optimized MOD16 improved E estimation for most catchments.
Especially in the Amazon, Parana, and Murray catchments, the optimized MOD16 performed much better.

At a global scale, we compared the mean annual E value estimated by the original and optimized MOD16
with values from other global terrestrial E data sets (i.e., GLEAM, MTE, PML, and ERA‐Interim) from
2001 to 2006. The left panel of Figure 8 shows that the overall spatial patterns of each data set were similar

Table 4
Summary Statistics for Performance of the MOD16 Algorithm Using the Original (ori) and Optimized (opt) Parameter Sets

Bias R2 Slope RMSE RE NSE

Ori Opt Ori Opt Ori Opt Ori Opt Ori Opt Ori Opt

ENF −0.27 0.06 0.44 0.59 0.78 0.67 1.20 0.74 0.92 0.59 −0.84 0.37
EBF −0.24 0.07 0.4 0.45 0.76 0.62 1.03 0.79 0.54 0.41 −0.69 0.11
DNF −0.02 0.01 0.56 0.68 0.77 0.79 0.62 0.50 0.56 0.45 0.52 0.69
DBF −0.07 −0.18 0.62 0.67 0.84 0.78 1.15 0.96 0.70 0.60 0.02 0.33
MF −0.24 −0.04 0.49 0.61 0.94 0.73 1.10 0.60 1.04 0.56 −0.27 0.59
CSH −1.54 −0.04 0.38 0.44 0.69 0.84 2.03 0.95 1.10 0.60 −5.09 −0.35
OSH −0.26 0.07 0.31 0.36 0.66 0.47 0.95 0.68 1.10 0.86 −1.06 −0.15
WSA 0.33 −0.10 0.30 0.58 0.48 0.62 1.08 0.79 0.66 0.51 −0.02 0.39
SAV 0.48 0.04 0.26 0.46 0.46 0.55 1.11 0.83 0.75 0.59 −0.30 0.21
GRA −0.04 0.02 0.49 0.64 0.67 0.71 0.88 0.70 0.75 0.60 0.09 0.42
CRO −0.03 0.02 0.58 0.67 0.75 0.82 1.00 0.84 0.83 0.70 −0.27 0.07

Note. The better value of each pair of values is boldfaced. Statistical indicators: R2, regression goodness of fit; RMSE, root‐mean‐square error; RE, relative error;
NSE, Nash‐Sutcliffe efficiency coefficient. CSH, closed shrubland; CRO, cropland; DBF, deciduous broadleaf forest; DNF, deciduous needleleaf forest; EBF, ever-
green broadleaf forest; ENF, evergreen needleleaf forest; GRA, grassland; MF, mixed forest; OSH, open shrubland; SAV, savanna; WSA, woody savanna.

Figure 7. Comparison of the original and optimized MOD16 at the catchment scale. (a) Scatterplot for the relationship between the simulated and water‐balance E
values (each point represents one catchment for 1 year). (b)Map of the differences in the Nash‐Sutcliffe efficiency coefficient (NSEopt‐NSEori) for the 32 catchments.
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even though themean annual E ranged from 492 to 628mm/year. The highest mean annual Ewas estimated
by ERA‐Interim (628 mm/year), and the lowest was obtained from PML (492 mm/year). The optimized
MOD16 (532 mm/year) and GLEAM (533 mm/year) algorithms had similar results, and these were slightly
higher than the results of the original MOD16 (514 mm/year) and MTE (520 mm/year).

However, some regional differences can be detected among these data sets. For example, the original
MOD16 showed lower E estimates than the other estimates in southeastern South America. The E values
for the Indian continent from the PML, MTE, and ERA‐Interim were higher than those from the other data
sets. The right panel in Figure 8 shows the profiles of latitudinal average E for each data set. The E profile of
ERA‐Interim showed clearly higher values than those of the other data sets at most latitudes, and this is con-
sistent with the results of Miralles et al. (2016). Moreover, the E profile estimated by the original MOD16 was
relatively low in the Southern Hemisphere, between 10 and 40°S; in contrast, the lowest values in the
Northern Hemisphere (from 40 to 60°N) were estimated by PML. The optimized MOD16 generally per-
formed similarly to GLEAM and MTE in the E profile, except for the latitude ranges from 70 to 80°N and
from 10 to 15°N, where it produced lower estimates. Overall, the optimized MOD16 performed reasonably
well at regional and global scales.

5. Discussion
5.1. Analysis of the Parameters of the MOD16 Algorithm

MOD16 is the most widely used algorithm for estimating terrestrial evapotranspiration (Hu et al., 2015;
Michel et al., 2016; Miralles et al., 2016). However, apart from the errors associated with the model's

Figure 8. Average annual land evapotranspiration from 2001 to 2006 for the optimized MOD16, original MOD16, Global Land Evaporation Amsterdam Model
(GLEAM), Model Tree Ensemble (MTE), PM‐Leuning (PML), and European Centre for Medium‐range Weather Forecasts Reanalysis‐Interim evaporation pro-
duct (ERA‐Interim). The latitudinal profiles of these data sets (mean value for a given latitude) are shown in the right panel.
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structure and the quality of the forcing data, the model parameters impose considerable uncertainties when
using theMOD16 algorithm, particularly for global E applications (Kim et al., 2012; Liu et al., 2013; Ramoelo
et al., 2014; Talsma et al., 2018; Yang et al., 2015; Yao et al., 2014). Therefore, to generate a reliable terrestrial
E data set, much effort has been devoted to obtaining the optimal parameters for characterizing the hetero-
geneity of the land surface and vegetation (Bastola et al., 2011; Brigode et al., 2013; McCabe et al., 2016;
Zhang et al., 2017). Most of the parameters can only be derived from calibration based on in situ observa-
tional data (He et al., 2011). Therefore, identifying the key parameters in the MOD16 algorithm and analyz-
ing their interactions are crucial for further optimization. The present results indicated that the E values
were sensitive to 8 of the 10 parameters for all biomes (Figure 4), and these parameters were related to soil
and plant canopy constraints.

β, which is set as a constant (0.2 kPa) in the original MOD16 (Mu et al., 2011), was the parameter to which
MOD16 was most sensitive across all biomes. The SI values for β were lower for the forest ecosystems than
for the other biomes, which is due to the low contribution of soil evaporation to the total E in forest ecosys-
tems. Previous studies have indicated that choosing an appropriate value of β is crucial to accurately estimate
soil evaporation (Fisher et al., 2008; García et al., 2013; McCabe et al., 2016; Zhang et al., 2017; Zhu et al.,
2016). After testing the effects of different β values on soil evaporation, Yang et al. (2015) set β to 1 (kPa)
to estimate E over the oasis region of northwestern China. For an environment with limited soil moisture,
a lower β value (e.g., 0.1 kPa) has been proposed and may provide a more meaningful estimate of E
(García et al., 2013; McCabe et al., 2016; Zhang et al., 2017; Zhu et al., 2014). Figure 5 shows that the opti-
mizedmedian values of β ranged from 0.31 to 0.93 kPa across the different biomes and that these values were
all greater than the β value (0.2 kPa) used in the original algorithm. Furthermore, relatively high values of β
(approximately 0.8 kPa) were found in the forest, cropland, and grassland biomes, versus lower values
(<0.6 kPa) occurred in the biomes with low vegetation cover and dry environmental conditions (i.e., SAV,
WAS, OSH, and CSH), which lead to low soil evaporation due to the constraint of soil moisture stress.

Cl was another parameter to which MOD16 was sensitive (Figure 4). It represents the mean potential stoma-
tal conductance per unit leaf area. This is important because leaf stomatal conductance dominates a plant's
transpiration process and responds rapidly to changes in environmental conditions such as the air tempera-
ture, relative humidity, and soil water content (Bai et al., 2015; Leuning et al., 2008; Zhang, Leuning, et al.,
2010). Besides, the bias of MOD16 is likely related to the scaling stomatal conductance of canopy transpira-
tion (Talsma et al., 2018). Hence, an optimal value of Cl could improve characterization of the transpiration
mechanisms in different biomes and significantly improve estimates of the plant transpiration rate (Ershadi
et al., 2015; Zhu et al., 2014). Due to the high proportion of plant transpiration over the diverse biomes, the
sensitivity values of Cl for the biomes with good vegetation cover (i.e., forests, cropland, and grassland) were
higher than for those with sparse vegetation cover (i.e., savanna and shrubland; Figure 4). Overall, the opti-
mized values of Cl for most biomes were similar to those in the original algorithm. However, the optimized
Cl values for the OSH and CSH (~0.0018) were slightly lower than the original values (0.0065), and were
closer to the maximum stomatal conductance for open shrubland (0.0028; Leuning et al., 2008; Zhang
et al., 2008).

The process of soil evaporation is linked both with soil physical properties (such as soil moisture, pore dia-
meter, and texture) and with the air turbulence at the boundary between the soil and atmosphere (van de
Griend & Owe, 1994). Nevertheless, to reduce the quantity of forcing data and make the algorithm more
applicable at a global scale, MOD16 employed several semiempirical parameters to characterize soil
evaporation. For an algorithm based on a PM equation, the proper parameterization of surface resistance sig-
nificantly influences the accuracy of the simulated E (Ershadi et al., 2015; Zhang et al., 2008). In MOD16, the
simulated E was sensitive to four soil‐resistance‐related parameters (rblmax, rblmin, VPDclose, and VPDopen)
for all biomes (Figure 4). As expected, these parameters showed high biome‐specific variation across the
different environments. However, the optimized values of these four parameters were generally higher
than their original values for each biome (Figure 5), which can result in strong constraints on the soil
evaporation processes.

Furthermore, the wet canopy evaporation (Ewet), which relates to evaporation from precipitation intercepted
by the plant canopy, has normally been regarded as a significant component of the total evapotranspiration,
especially in tropical rainforests (Herbst et al., 2008; Jiménez et al., 2011). Previous studies developed models
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for estimating the interception evaporation, such as the analytical model of Gash (1979), which needs daily
precipitation data and site parameters to characterize the water balance of the wet canopy. However, the
MOD16 algorithm does not use rainfall data. Instead, MOD16 calculates Ewet based on the PM equation
and employs two parameters (gl_sh and gl_e_wv) related to the surface and aerodynamic resistance of the
wet canopy. Previous studies indicated that the proportion and magnitude of the interception evaporation
from MOD16 were much higher than in other global E products (i.e., GLEAM and PT‐JPL; Miralles et al.,
2016). As shown in Table 3 and Figure 5, the optimized values of gl_e_wv were substantially lower than the
original values for all biomes. This indicates that the surface resistance of the wet canopy will become much
stronger than that in the original algorithm and that this will therefore reduce the simulated Ewet. In addi-
tion, the optimized gl_sh had larger values for some forest biomes (especially EBF) than for other biomes with
low canopy heights. This will result in a lower aerodynamic resistance in the forest biomes, which is prob-
ably due to the interaction between the relative humidity and the low roughness of the canopy surface.

5.2. Evaluation of the Optimized Algorithm at Site, Catchment, and Global Scales

At the site scale, the optimized MOD16 reliably simulated E, with a lower bias, RMSE, and RE and a higher
NSE than the original MOD16 (Figure 6 and Table 4). The original MOD16 tended to underestimate E for
most biomes (Table 4), which was consistent with previous studies (Long et al., 2014; Vinukollu et al.,
2011; Yang et al., 2015; Yao et al., 2014). It should be noted that differences between the observed and simu-
lated results using the optimized parameters were largest in the OSH, CSH, SAV, CRO, and EBF biomes,
which might be attributable to structural errors in the algorithm. The MOD16 uses micrometeorological
variables (i.e., air temperature and VPD) to characterize the effects of water limitation on soil evaporation
and plant transpiration processes, which is based on the assumption of a strong link between soil moisture
and evaporative demand of the adjacent atmosphere (Seneviratne et al., 2010). However, this assumption is
only valid over large spatial and temporal scales when the vertically adjacent atmosphere is in equilibrium
with the underlying soil (Fisher et al., 2008; Long & Singh, 2010; Morillas et al., 2013; Vinukollu, Wood,
et al., 2011; Yang et al., 2015). Nevertheless, the definition of the wet fraction of evaporation (fwet) in
MOD16 was simplified as a semiempirical function associated with relative humidity (RH), which depends
more strongly on the volume and duration of the precipitation (Miralles et al., 2011; Shuttleworth & Calder,
1979) and on vegetation properties (e.g., broad leaves can intercept more rainfall than needle leaves). Hence,
continuous efforts should be devoted to understanding the mechanisms that underlie evapotranspiration,
since a more accurate parameterization scheme would improve the accuracy of the MOD16 algorithm.

The catchment water‐balance E data provide another way to validate the simulated E (Sheffield et al., 2009).
Figure 7 shows that the optimized MOD16 provided a better fit to the data (i.e., the slope, R2, and NSE) for
the 32 major basins that we analyzed. Zhang, Kimball, et al., 2010 evaluated a satellite‐derived global E data
set of major global catchments and obtained R2 = 0.80 and RMSE = 186.3 mm/year, which are similar to the
optimized MOD16 results. Jung et al. (2010) compared the mean annual MTE model data with the mean
annual E from catchment water‐balance data and obtained R2 = 0.92. This is due to the MTE data being
upscaled from the observed flux data, which is more consistent with the precipitation and discharge data
used in the derivation of the catchment water balance. Note that the optimized MOD16 greatly improved
the algorithm's performance for the catchments in South America, Africa, Southeast Asia, and Oceania,
where the original MOD16 was generally inconsistent with the E based on in situ observations (Michel
et al., 2016; Ramoelo et al., 2014) and other simulations (Miralles et al., 2016).

At a global scale, the optimized MOD16 showed better spatial agreement with the other products (i.e.,
GLEAM, MTE, and PML) than the original MOD16, especially in the southern hemisphere (Figure 8).
Previous studies have indicated that the original MOD16 products tended to underestimate E in the southern
hemisphere and overestimate E at high latitudes in the northern hemisphere (e.g., Miralles et al., 2016).
Furthermore, the original MOD16 performed less well over sparsely vegetated areas in the central Great
Plains area of the United States (Velpuri et al., 2013), as well as in the Sahel, Southern Africa, and arid
Mediterranean regions (Trambauer et al., 2014). In contrast, the optimized MOD16 improved the perfor-
mance of the simulation in these regions and agreed better with the GLEAM and MTE data sets. This shows
that the optimized parameters successfully reduced the error caused by the original parameterization
scheme. In addition, the mean annual terrestrial E from 2001 to 2006 for the optimized MOD16 was
532 mm/year, which was higher than that estimated by the original MOD16 (514 mm/year) and much
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closer to that estimated by GLEAM (533 mm/year). Mueller et al. (2013) calculated the mean annual
terrestrial E (550 mm/year) based on merged synthesis products. In addition, it is important to note that
the differences in the algorithm structure and uncertainties in the forcing data cause large inter–data set
differences. For example, the latitudinal profile of MTE exhibited the lowest values near the equator, which
might be associated with the lack of interception evaporation in the eddy covariance measurements
(Miralles et al., 2016; van Dijk et al., 2015). Nevertheless, the multiple data sets provided a reference range
for the latitudinal average of terrestrial E.

6. Conclusions

Understanding the influence of the parameterization scheme is nontrivial in a PM‐type evaporation
algorithm. In the present study, we applied the Sobol’ method to identify the key parameters in the
MOD16 algorithm. We found that the simulated E was most sensitive to eight parameters (β, Cl, rblmax,
rblmin, gl_sh, gl_e_wv, VPDclose, and VPDopen) under different environmental conditions. Most of these key
parameters were associated with the resistance parameterizations, which significantly influenced the accu-
racy of the simulation. It should be noted that MOD16 exhibited the highest sensitivity to β for all biomes,
whereas β was considered to be a constant in the original MOD16. We optimized the eight parameters to
which MOD16 was most sensitive by using the DE‐MCmethod based on data from 175 flux sites. The result-
ing posterior distributions of the selected parameters were successfully constrained by these observations
(i.e., showed a narrower range of variation than the original MOD16). We evaluated the resulting MOD16
algorithmwith optimized parameters at multiple spatial scales, including a cross validation with in situ eddy
covariance data and comparisons with WBE data at 32 catchments and other terrestrial E products at global
scale. The optimized algorithm performed better than the original algorithm in most cases.

Nonetheless, deficiencies remain in the MOD16 algorithm for some specific cases even after optimization.
This may relate to errors associated with the algorithm's structure and uncertainties in the forcing data.
Themechanisms that underlie E not only require separate analysis of the components (e.g., interception, soil
evaporation, and plant transpiration) because of their different biophysical drivers but also require compre-
hensive consideration of the continuous transfers of water through the soil‐plant‐atmosphere‐continuum.
The characterization of soil moisture is inadequate in the MOD16 algorithm, in part because it is a signifi-
cant challenge to generate suitable soil moisture data for a global E data set with high spatiotemporal resolu-
tion. Furthermore, the energy partitioning scheme creates a large range of uncertainty for the different
components of E, which are difficult to validate separately because conventional technologies (e.g., eddy
covariance, scintillometers, and lysimeters) cannot distinguish the components of the total evapotranspira-
tion. In addition, with increasing amounts of in situ flux data and other available observation data, further
optimization of the parameters of the MOD16 algorithm should be conducted to further improve the accu-
racy of its simulation.
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